วันจันทร์ที่ 20 มีนาคม พ.ศ. 2560

Arduino variable sine wave max 1000Hz

/*

*ใช้ขับมอเตอร์สามเฟส ได้พร้อมกัน 5 ตัว
* DDS Sine Generator mit ATMEGS 2560
*  generates the  3.9 KHz PWM 3 PHASE
*  Interrupt to change duty cycle for the output PWM signals
* D. Tolken
* 120 degress out of phase signals for 3 phase BLDC motor controller
* CPUT, South Africa


a Huge thumbs up and thanks must be given to Martin Nawrath for the developement of the original code to generate a sine wave using PWM and a LPF.
Link:
                                         http://interface.khm.de/index.php/lab/experiments/arduino-dds-sinewave-generator/
*/

#include "arduino.h" //Store data in flash (program) memory instead of SRAM
#include "avr/pgmspace.h"
#include "avr/io.h"
// Look Up table of a single sine period divied up into 256 values. Refer to PWM to sine.xls on how the values was calculated
//PROGMEM  prog_uchar sine256[] PROGMEM = {
//const uint8_t sine256[] PROGMEM = {
//const unsigned char sine256[] PROGMEM  = {
  // const byte sine256[] PROGMEM  = {
// Look Up table of a single sine period divied up into 256 values. Refer to PWM to sine.xls on how the values was calculated
//PROGMEM  prog_uchar sine256[]
   const byte sine256[] PROGMEM  = {
  127,130,133,136,139,143,146,149,152,155,158,161,164,167,170,173,176,178,181,184,187,190,192,195,198,200,203,205,208,210,212,215,217,219,221,223,225,227,229,231,233,234,236,238,239,240,
  242,243,244,245,247,248,249,249,250,251,252,252,253,253,253,254,254,254,254,254,254,254,253,253,253,252,252,251,250,249,249,248,247,245,244,243,242,240,239,238,236,234,233,231,229,227,225,223,
  221,219,217,215,212,210,208,205,203,200,198,195,192,190,187,184,181,178,176,173,170,167,164,161,158,155,152,149,146,143,139,136,133,130,127,124,121,118,115,111,108,105,102,99,96,93,90,87,84,81,78,
  76,73,70,67,64,62,59,56,54,51,49,46,44,42,39,37,35,33,31,29,27,25,23,21,20,18,16,15,14,12,11,10,9,7,6,5,5,4,3,2,2,1,1,1,0,0,0,0,0,0,0,1,1,1,2,2,3,4,5,5,6,7,9,10,11,12,14,15,16,18,20,21,23,25,27,29,31,
  33,35,37,39,42,44,46,49,51,54,56,59,62,64,67,70,73,76,78,81,84,87,90,93,96,99,102,105,108,111,115,118,121,124

};
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) //define a bit to have the properties of a clear bit operator
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))//define a bit to have the properties of a set bit operator

int PWM1=  2;// PWM1 output, phase 1
int PWM2 = 3; //[WM2 ouput, phase 2
int PWM3 = 4; //PWM3 output, phase 3

int PWM4=  5;// PWM1 output, phase 1
int PWM5 = 6; //[WM2 ouput, phase 2
int PWM6 = 7; //PWM3 output, phase 3

int PWM7 = 8;// PWM1 output, phase 1
int PWM8 = 9; //[WM2 ouput, phase 2
int PWM9 = 10; //PWM3 output, phase 3

int PWM10 = 11;// PWM1 output, phase 1
int PWM11 = 12; //[WM2 ouput, phase 2
int PWM12 = 13; //PWM3 output, phase 3

int PWM13 = 44;// PWM1 output, phase 1
int PWM14 = 45; //[WM2 ouput, phase 2
int PWM15 = 46; //PWM3 output, phase 3

int offset_1 = 85; //offset 1 is 120 degrees out of phase with previous phase, Refer to PWM to sine.xls
int offset_2 = 170; //offset 2 is 120 degrees out of phase with offset 1. Refer to PWM to sine.xls
int program_exec_time = 52; //monitor how quickly the interrupt trigger
int ISR_exec_time = 53; //monitor how long the interrupt takes

double dfreq;
const double refclk=31376.6;      // measured output frequency

// variables used inside interrupt service declared as voilatile
volatile byte current_count;              // Keep track of where the current count is in sine 256 array
volatile byte ms4_delay;             //variable used to generate a 4ms delay
volatile byte c4ms;              // after every 4ms this variable is incremented, its used to create a delay of 1 second
volatile unsigned long phase_accumulator;   // pahse accumulator
volatile unsigned long tword_m;  // dds tuning word m, refer to DDS_calculator (from Martin Nawrath) for explination.

void setup()
{
  pinMode(PWM1, OUTPUT);      //sets the digital pin as output
  pinMode(PWM2, OUTPUT);      //sets the digital pin as output
  pinMode(PWM3, OUTPUT);

  pinMode(PWM4, OUTPUT);      //sets the digital pin as output
  pinMode(PWM5, OUTPUT);      //sets the digital pin as output
  pinMode(PWM6, OUTPUT);  //sets the digital pin as output
  
  pinMode(PWM7, OUTPUT);      //sets the digital pin as output
  pinMode(PWM8, OUTPUT);      //sets the digital pin as output
  pinMode(PWM9, OUTPUT);
  
  pinMode(PWM10, OUTPUT);      //sets the digital pin as output
  pinMode(PWM11, OUTPUT);      //sets the digital pin as output
  pinMode(PWM12, OUTPUT);
  
  pinMode(PWM13, OUTPUT);      //sets the digital pin as output
  pinMode(PWM14, OUTPUT);      //sets the digital pin as output
  pinMode(PWM15, OUTPUT);
  
  pinMode(50, OUTPUT);      //sets the digital pin as output
  pinMode(52, OUTPUT);      //sets the digital pin as output
  pinMode(53, OUTPUT);
  
  //pinMode(program_exec_time, OUTPUT);      //sets the digital pin as output
  //pinMode(52, OUTPUT);         //sets the digital pin as output
  sbi(PORTB,program_exec_time); //Sets the pin
  
  Setup_timer0();
  Setup_timer1();
  Setup_timer2();
  Setup_timer3();
  Setup_timer4();
  Setup_timer5();
  //Disable Timer 1 interrupt to avoid any timing delays
  cbi (TIMSK0,TOIE0);              //disable Timer0 !!! delay() is now not available
  sbi (TIMSK2,TOIE2);              //enable Timer2 Interrupt
  
  //dfreq=1000;
  //dfreq=10000;                    //initial output frequency = 1000.o Hz
  tword_m=pow(2,32)*dfreq/refclk;  //calulate DDS new tuning word 

}



  
 

void loop()
{
  while(1) 
  {
      sbi(PORTB,program_exec_time); //Sets the pin 
      if (c4ms > 0) // c4ms = 4ms, thus 4ms *250 = 1 second delay
       {                 
        c4ms=0;                          //Reset c4ms
        //dfreq=map(analogRead(0),0,1230,0,1000);
        dfreq=map(analogRead(0),0,1023,0,1000);             //Read voltage on analog 1 to see desired output frequency, 0V = 0Hz, 5V = 1.023kHz
        cbi (TIMSK2,TOIE2);              //Disable Timer2 Interrupt
        tword_m=pow(2,32)*dfreq/refclk;  //Calulate DDS new tuning word
        sbi (TIMSK2,TOIE2);              //Enable Timer2 Interrupt 
      }
  }
}

void Setup_timer0(void)
{
  // Timer1 Clock Prescaler to : 1
  //sbi (TCCR0B, CS01)|1<<(CS00);
  //cbi (TCCR0B, CS01);
  //cbi (TCCR0B, CS02);
  
  TCCR0B = (TCCR0B & 0b11111000) | 0x02;
  // Timer1 PWM Mode set to Phase Correct PWM
  cbi (TCCR0A, COM0A0);
  sbi (TCCR0A, COM0A1);
  cbi (TCCR0A, COM0B0); 
  sbi (TCCR0A, COM0B1);

  // Mode 1 / Phase Correct PWM
  sbi (TCCR0A, WGM00); 
  cbi (TCCR0A, WGM01);
  //cbi (TCCR0B, WGM02);
  //cbi (TCCR0B, WGM03);
}
//Set prscaler to 1, PWM mode to phase correct PWM,  16000000/510 = 31372.55 Hz clock
void Setup_timer1(void)
{
  
 TCCR1B = (TCCR1B & 0b11111000) |0x02;
  // Timer1 Clock Prescaler to : 1
  //sbi (TCCR1B, CS10);
  //cbi (TCCR1B, CS11);
  //cbi (TCCR1B, CS12);
  
  // Timer1 PWM Mode set to Phase Correct PWM
  cbi (TCCR1A, COM1A0);
  sbi (TCCR1A, COM1A1);
  cbi (TCCR1A, COM1B0); 
  sbi (TCCR1A, COM1B1);

  // Mode 1 / Phase Correct PWM
  sbi (TCCR1A, WGM10); 
  cbi (TCCR1A, WGM11);
  cbi (TCCR1B, WGM12);
  cbi (TCCR1B, WGM13);
}

//Timer 1 setup
//Set prscaler to 1, PWM mode to phase correct PWM,  16000000/510 = 31372.55 Hz clock
void Setup_timer2() 
{
  
  TCCR2B = (TCCR2B & 0b11111000) | 0x02;// Timer2 Clock Prescaler to : 1
 // sbi (TCCR2B, CS20);
  //cbi (TCCR2B, CS21);
  //cbi (TCCR2B, CS22);

  // Timer2 PWM Mode set to Phase Correct PWM
  cbi (TCCR2A, COM2A0);  // clear Compare Match
  sbi (TCCR2A, COM2A1);
  cbi (TCCR2A, COM2B0); 
  sbi (TCCR2A, COM2B1);
  
  // Mode 1  / Phase Correct PWM
  sbi (TCCR2A, WGM20);  
  cbi (TCCR2A, WGM21);
  cbi (TCCR2B, WGM22);
}
void Setup_timer3(void)
{
  
  
 TCCR3B = (TCCR3B & 0b11111000) |0x02;// Timer1 Clock Prescaler to : 1
  //sbi (TCCR3B, CS30);
  //cbi (TCCR3B, CS31);
  //cbi (TCCR3B, CS32);
  
  // Timer1 PWM Mode set to Phase Correct PWM
  cbi (TCCR3A, COM3A0);
  sbi (TCCR3A, COM3A1);
  cbi (TCCR3A, COM3B0); 
  sbi (TCCR3A, COM3B1);
  cbi (TCCR3A, COM3C0); 
  sbi (TCCR3A, COM3C1);

  // Mode 1 / Phase Correct PWM
  sbi (TCCR3A, WGM30); 
  cbi (TCCR3A, WGM31);
  cbi (TCCR3B, WGM32);
  cbi (TCCR3B, WGM33);
  cbi (TCCR3C, WGM33);
  cbi (TCCR3C, WGM33);
}

//Timer 1 setup
//Set prscaler to 1, PWM mode to phase correct PWM,  16000000/510 = 31372.55 Hz clock
void Setup_timer4() 
{
  
TCCR4B = (TCCR4B & 0b11111000) | 0x02;// Timer2 Clock Prescaler to : 1
  //sbi (TCCR4B, CS40);
  //cbi (TCCR4B, CS41);
  //cbi (TCCR4B, CS42);

  // Timer2 PWM Mode set to Phase Correct PWM
  cbi (TCCR4A, COM4A0);  // clear Compare Match
  sbi (TCCR4A, COM4A1);
  cbi (TCCR4A, COM4B0); 
  sbi (TCCR4A, COM4B1);
  cbi (TCCR4A, COM4C0); 
  sbi (TCCR4A, COM4C1);
  // Mode 1  / Phase Correct PWM
  sbi (TCCR4A, WGM40);  
  cbi (TCCR4A, WGM41);
  cbi (TCCR4B, WGM42);
  cbi (TCCR4C, WGM43);
  cbi (TCCR4C, WGM43);

}

void Setup_timer5(void)
{
  
TCCR5B = (TCCR5B & 0b11111000) |0x02;// Timer1 Clock Prescaler to : 1
  //sbi (TCCR5B, CS50);
  //cbi (TCCR5B, CS51);
  //
  // Timer1 PWM Mode set to Phase Correct PWM
  cbi (TCCR5A, COM5A0);
  sbi (TCCR5A, COM5A1);
  cbi (TCCR5A, COM5B0); 
  sbi (TCCR5A, COM5B1);
  cbi (TCCR5A, COM5C0); 
  sbi (TCCR5A, COM5C1);

  // Mode 1 / Phase Correct PWM
  sbi (TCCR5A, WGM50); 
  cbi (TCCR5A, WGM51);
  cbi (TCCR5B, WGM52);
  cbi (TCCR5B, WGM53);
  cbi (TCCR5C, WGM50);
}

//This is the timebase REFCLOCK for the DDS generator
//FOUT = (M (REFCLK)) / (2 exp 32)
//Runtime : 8 microseconds
ISR(TIMER2_OVF_vect)
{
  cbi(PORTD,program_exec_time); //Clear the pin
  sbi(PORTD,ISR_exec_time);          // Sets the pin

  phase_accumulator=phase_accumulator+tword_m; //Adds tuning M word to previoud phase accumulator. refer to DDS_calculator (from Martin Nawrath) for explination.
  current_count=phase_accumulator >> 24;     // use upper 8 bits of phase_accumulator as frequency information                      
  //motor 1
  OCR3B = pgm_read_byte_near(sine256 + current_count); // read value fron ROM sine table and send to PWM
  OCR3C = pgm_read_byte_near(sine256 + (uint8_t)(current_count + offset_1)); // read value fron ROM sine table and send to PWM, 120 Degree out of phase of PWM1
  OCR0B = pgm_read_byte_near(sine256 + (uint8_t)(current_count + offset_2));// read value fron ROM sine table and send to PWM, 120 Degree out of phase of PWM2
   //motor 2
  OCR3A = OCR3B; //OCR0A;//pgm_read_byte_near(sine256 + current_count); // read value fron ROM sine table and send to PWM
  OCR4A = OCR3C;//OCR0B;//pgm_read_byte_near(sine256 + (uint8_t)(current_count + offset_1)); // read value fron ROM sine table and send to PWM, 120 Degree out of phase of PWM1
  OCR4B = OCR0B;//OCR1A;//pgm_read_byte_near(sine256 + (uint8_t)(current_count + offset_2));// read value fron ROM sine table and send to PWM, 120 Degree out of phase of PWM2
   //motor 3
  OCR4C = OCR3B; //OCR0A;//pgm_read_byte_near(sine256 + current_count); // read value fron ROM sine table and send to PWM
  OCR2B = OCR3C;//OCR0B;///pgm_read_byte_near(sine256 + (uint8_t)(current_count + offset_1)); // read value fron ROM sine table and send to PWM, 120 Degree out of phase of PWM1
  OCR2A = OCR0B;//OCR1A;//pgm_read_byte_near(sine256 + (uint8_t)(current_count + offset_2));// read value fron ROM sine table and send to PWM, 120 Degree out of phase of PWM2
   //motor 4
  OCR1A = OCR3B; //OCR0A;//OCR2A;//pgm_read_byte_near(sine256 + current_count); // read value fron ROM sine table and send to PWM
  OCR1B = OCR3C;//OCR0B;//pgm_read_byte_near(sine256 + (uint8_t)(current_count + offset_1)); // read value fron ROM sine table and send to PWM, 120 Degree out of phase of PWM1
  OCR0A = OCR0B;//OCR1A;//pgm_read_byte_near(sine256 + (uint8_t)(current_count + offset_2));// read value fron ROM sine table and send to PWM, 120 Degree out of phase of PWM2
   //motor 5
  OCR5A = OCR3B; //OCR0A;//pgm_read_byte_near(sine256 + current_count); // read value fron ROM sine table and send to PWM
  OCR5B = OCR3C;//OCR0B;///pgm_read_byte_near(sine256 + (uint8_t)(current_count + offset_1)); // read value fron ROM sine table and send to PWM, 120 Degree out of phase of PWM1
  OCR5C = OCR0B;//OCR1A;//pgm_read_byte_near(sine256 + (uint8_t)(current_count + offset_2));// read value fron ROM sine table and send to PWM, 120 Degree out of phase of PWM2
  
  
    //increment variable ms4_delay every 4mS/125 =  milliseconds 32uS
  if(ms4_delay++ == 125)
  
  {  
    c4ms++;
    ms4_delay=0; //reset count
   }   

cbi(PORTD,ISR_exec_time);            //Clear the pin
}

1 ความคิดเห็น: